
On the Challenges of Safe and Scalable
Reinforcement Learning for Automated Driving at

Intersections
Danial Kamran, Marvin Busch, Tizian Engelgeh

Institute of Measurement and Control Systems,
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Email: danial.kamran@kit.edu, {marvin.busch, tizian.engelgeh}@student.kit.edu

Abstract—In this paper we address safety and scalability as the
main challenges that are still existing for decision making policies
based on reinforcement learning (RL) to be applied for automated
driving. We show how Deep-sets structure which was used before
for automated lane changes can also solve dynamic order and
input variations for the RL agents used at occluded intersections
where the number of lanes and vehicles can be different at
different scenarios. According to our evaluation results, deep-
sets DQN can learn an optimal policy faster, and becomes more
stable comparing with the normal DQN agent.

I. INTRODUCTION

A. Motivation

One of the most important challenges for automated driving
is providing a safe and scalable policy which can handle
complex situations with low or high traffic density and also
different environments. In reality, there are several types of
uncertainties that need to be considered for the decision
making policy in order to generate safe and robust actions.
These uncertainties can come from partial observation of the
automated vehicle mainly because of sensor occlusions or un-
known drivers intention. Reinforcement Learning is a suitable
framework for learning optimal decisions for complex robotics
tasks including automated vehicles [1, 2, 3, 4, 5, 6, 7, 8].
This framework helps to learn long term optimal decisions for
different scenarios in automated driving such as yielding in an
occluded intersection [1, 2, 3, 4, 8] or lane changes in highway
[5, 6, 7] .

In this work we focus on automated driving at un-signalized
intersections where the ego vehicle needs to yield to vehicles
which are close to the intersection and leave when they are far
enough. We try to address some main challenges that prevent
reinforcement learning based policies to be applied in real
world for such scenario. These challenges can be summarized
as:
• Dynamic inputs: The number of cars, intersecting lanes

and also their order inside the state representation can
be different from the training data which can result
in catastrophic decisions. Therefore, the learned policy
should be scalable and robust to these changes.

• Partial observation in the environment: Because of oc-
clusions some vehicles are not visible for the decision
making policy. Also the intention of drivers (like being

cooperative or aggressive) is unknown. Therefore, the
learned policy should be able to handle such uncertain-
ties in its inputs and provide safe but not conservative
decisions.

B. Related Works

Figure 1 depicts the whole scenario and parameters we use
in order to represent the state for our decision making agent
as presented before in [8]. The main advantage of such state
representation is that it can model different situations that can
happen for an automated driving car at an occluded intersec-
tion. However, in contrast to grid based representation which
assume a fixed 2d array for modeling the whole intersection as
proposed in [1], the length of such representation depends on
the maximum number of elements that can exist in the scenario
and can be very big for dense traffics at complex intersections
where a huge number of vehicles are driving at an intersection
with three or four intersecting lanes. Such huge state vector
can result in a big DQN network in order to process the
list of all cars and can cause overfitting problems. Another
problem that arises when using the standard architecture is
the permutation of the input elements. In complex situations
it is often not possible to form a uniform order of the elements
within the input vector. Even if the problem is independent of
the permutation of the elements, this will still lead to a higher
learning complexity.

The deep sets architecture was developed to solve the
problem of dynamic inputs for neural networks for general
machine learning tasks in [9]. In [7] the idea of deep sets was
used in the context of reinforcement learning for automated
driving, where the agent had to learn optimal lane change
decisions in highway scenario.

C. Contribution

In this paper, we propose a new architecture for the intersec-
tion scenario where the reinforcement learning agent can pro-
cess data for multiple vehicles and also different intersection
lanes using deep sets structure suited for the state modeling
shown in Figure 1. We show how the deep-sets architecture fits
very well to such state representation which categorizes input
data into vehicles, lanes and ego vehicle information. Being
permutation invariant and independent from the size of input

Figure 1: Overview of the yielding scenario we consider in our
work and parameters used for state representation. Blue car is
ego vehicle and red cars are relevant vehicles. Some cars are
occluded and not visible to the ego vehicle. White car which
has no potential conflict zone with the ego lane is discarded.

data, deep-sets architecture can help to learn a scalable and
generic policy which is robust to the input order and stable at
different traffic densities.

Moreover, we introduce yielding policies based on distri-
butional reinforcement learning which can learn return dis-
tributions for each action instead of its expected value that
can help to provide more robust policy against environment
uncertainties.

II. PROPOSED APPROACH

A. State Representation

Using the model shown in Figure 1 for a scene at an
occluded intersection with arbitrary number of intersecting
lanes and vehicles, the state used to represent that scene is
defined as below:

st =

de,stl d1 ... dn do1 ... dom
ve v1 ... vn vo1 ... vom

de,goal de,1 ... de,n de,o1 ... de,om



T

ego vehicles lanes

Such state representation has been previously used in [8] for
a list based DQN architecture which assumes fixed number of
input elements for cars and intersecting lanes. In that work,
in maximum 5 vehicles and 4 lanes could be provided for
the network and in case of having more vehicles, a criticality
function will specify which vehicles are more important and
should be represented for the DQN. However, in our deep-sets

based DQN model, we can increase the maximum number of
input elements to a big number (maximum 16 vehicles and 4
lanes) because the input space dedicated for the DQN model
does not depend on the size of input elements anymore.

B. Deep-set based State Processing

In a deep-sets based state processing architecture, the state
st = (xstatic, Xdyn) is divided into a static and a dynamic
part. The static part xstat corresponds to the values of the
state which are used in the same way in every situation. In
our intersection scenario the static part of the state refers to the
information about the ego vehicle such as its distance to the
stop-line, distance to the goal and its velocity. This information
is processed by φego network and then concatenated with
processed information from dynamic inputs. The dynamic part
Xdyn = [x1, x2, ..., xn] consists of the vectors of the n objects
and can vary in size as well as in the permutation of the ob-
jects. In the intersection scenario, dynamic input refers to the
information about vehicles and also intersecting lanes which
can be different at each situation. The deep sets architecture
only applies to the dynamic part which consists of the neural
networks φ and ρ and a permutation-invariant operator. We
dedicate two deep-sets architectures for the two dynamic input
categories at intersection scenario Xdyn = (Xveh, Xlane)
which are vehicles’ input Xveh and intersecting lanes Xlane.
Therefore, all vehicles and lanes data are processed as follows:

ψveh(Xveh) = ρveh(
∑

vehi∈Xveh

φveh(vehi), φego(xstatic))

(1)

ψlane(Xlane) = ρlane(
∑

lanei∈Xlane

φlane(lanei), φego(xstatic))

(2)
Figure 2 shows the overall structure of the proposed deep-sets
architecture in order to process static and dynamic parts of
the input state. In contrast to [7] which only provide static
input for the last layer connected to the DQN network, we
provide processed information of static input (φego(xstatic))
for each input category processing network (ρveh and ρlane)
which help to process dynamic input data relative to the ego
state at the intersection. In our implementation we used sum
of vectors as the permutation invariant operator, but any other
permutation invariant such as polling could also be used.

C. Reward Function

The reward function we used in our DQN is designed in
order to punish collisions and motivate fast but safe driving
through the intersection. For that purpose, we use this reward
function:

r(t) =


−1 on collision,
1 on success,
0 on non-terminating steps

(3)

φveh

φveh
ρveh

ρlane

φveh

φegoφego

φlane

φlane

IQN

Qβ(st, stop)

Qβ(st, slow)

Qβ(st, fast)

st

st{ego}

st{veh1}

st{veh2}

st{vehN}

st{lane1}

st{laneM}

Figure 2: Proposed Deep-sets architecture with the neural networks φveh and ρveh for processing vehicles’ data and φlane,
ρlane for processing information of intersecting lanes. The permutation invariant operator is shown as

⊕
.

D. Action Space

As proposed in [8], for automated driving at occluded
intersections we can learn a policy generating high level
actions instead of vehicle acceleration control commands. For
that, three actions as high level decisions are defined for our
RL algorithm:
• Stop: By this action, the ego vehicle should reach zero

velocity as fast as possible. It can interpreted as a give-
way high level action at the intersection where ago
vehicle should yield to other vehicles which are close
to the intersection.

• Drive slow: The ego vehicle should reach a fixed slow
velocity (1 m/s) meaning that the situation is still unclear
and it should drive slowly to gather more information.

• Drive fast: The ego vehicle should reach a fixed high
velocity (5 m/s) meaning that there is no vehicle or it
can get way from other vehicles which are far from the
intersection.

E. Implicit Quantile Networks (IQN)

We model the scenario of automated driving at intersection
as a Markov Decision Process (S,A,R, P, γ) where S and
A are state and action spaces and R is the reward function
as discussed in previous sections. P is the transition function
as Pr(.|st, at) and γ is the discount factor and is a value
between 0 and 1. Assuming agent is following a policy π, the
future return for each action at at each state st is defined as
Zπ(st, at) and the expected value of this random variable is
defined as the value function of the policy:

Qπ(st, at) := EZπ(st, at) = E[ΣTi=tγ
(i−t)r(si, ai)],

st ∼ P (.|st−1, at−1), at ∼ π(.|st)
(4)

One of the main difficulties with the DQN approach is
tuning the reward function in order to prevent risky behaviors
and motivate those safe actions that also provide higher

utility. The policy learned this way would definitely perform
more stable and safer in reality where several uncertainties
can occur even when they are slightly different from the
training environment. However, due to the fact that DQN
tries to maximize expected future return and neglects return
distributions, there are always some situations where safety
is sacrificed in order to have higher utility. In order to solve
this problem and provide risk aware policies that are able to
distinguish between risky actions with higher average utility
and safe actions which may have lower average utility, we
use distributional reinforcement learning. Therefore, instead
of learning expected value for future returns of each action as
Q(st, a) = E[Z(st, a)], the agent learns return distributions
(Z(st, at)). Such implementation helps to learn a more robust
policy which is less sensitive to hyperparameter changes.

Among different variations of distributional reinforcement
learning that have been proposed like categorical distribution
for fixed set of equidistant points (C51) [10], quantile regres-
sion (QR_DQN) [11], we use Implicit Quantile Network (IQN)
[12] in order to estimate return distributions. This approach
does not require fixed output distribution range since it learns
the quantile function F−1Z (τ) for the return as the random
variable Z where τ is a uniform sample τ ∼ U([0, 1]).

III. EVALUATIONS

A. Simulation Environment

For simulating the intersection scenario with occlusions we
used Carla simulator [13] and selected one of un-signalized
intersections where the ego vehicle should drive at one in-
tersection with up to four intersecting lanes with different
number of vehicles. Training phase consists of more than
5000 episodes. At the beginning of each training episode, ego
vehicle and random number of other vehicles are positions
at random distances from the intersection. Each vehicle has
random desired speed and is randomly assigned to drive on one
of intersection lanes. Also for each episode, a virtual obstacle

Virtual
Obstacle

Virtual
Obstacle

Occluded
Area

Figure 3: Top view images from the simulation used for training. Images are from one episode where ego vehicle (red vehicle)
stops behind stop line in order to yield to other vehicles (image left). In the middle image it starts driving through the intersection
and reaches the goal point (right image). Some vehicles are not visible for the reinforcement learning agent because they are
occluded by the virtual obstacle which is randomly generated for each episode.

Figure 4: Examples of four different scenarios generated by our simulator for evaluating the proposed approach. For each
intersection, number of lanes, location and size of obstacles are randomly generated. Red vehicle is the ego vehicle which
should give way to the blue vehicles. Light blue cars are not visible for the ego vehicle due to sensor occlusion from obstacles
(green areas) or from other vehicles. Gray rectangles show the phantom vehicles located at the maximum visible distance on
each lane.

with random size and offset from intersection is generated
in order to affect the sensor visibility. We assume maximum
70 meters visibility range and create the visibility polygon
around vehicle position which is cut due to this obstacle
(Figure 3). The position of stop line and also geometry of
all intersection lanes are mapped to be used for situation
representation as explained before. See [14] for some videos
about the simulation environment and scenarios.

We also used our own abstract simulator for occluded
intersections which is much faster and different intersections
with multiple number of lanes and vehicles can be generated
during training. Figure 4 depicts some examples of top view
images from this simulator.

B. Impact of Deep-sets Architecture
Compared to the standard network architecture, the deep

sets architecture has proven to be significantly more ad-
vantageous for our application. The deep sets based DQN
has significantly smaller size and fewer parameters to learn
comparing to the normal DQN and therefore it could be trained
much faster. The highest reward of the standard architecture
could be achieved with deep sets with almost half of the
training time. At the same time, a policy could be learned
through the deep sets architecture that is faster without taking
a significantly higher risk (Figure 5). While with the standard
architecture the training time was already longer even for five

Figure 5: Comparing average evaluation steps for standard
DQN and Deep-sets based DQN.

observed vehicles, a policy for up to eight considered vehicles
was learned without any problems using deep sets. Due to the
fact that deep sets structure does not assume fixed number
of input vehicles, the learned policy could even perform
reasonable when the number of vehicles at the intersection
is much higher.

C. Return Distributions using IQN Approach

We utilized Implicit Quantile Networks (IQN) in order
to learn return distributions in our intersection environment.

Figure 6: An example of learned distributions for the IQN
agent (left image) at one state of the intersection (right image).
Ego vehicle (blue) should decelerate in order to prevent a
potential collision with the red car coming from the left side.

Figure 6 shows an example of learned distributions for each
action at one specific situation. In this situation, the ego vehicle
(blue) should decelerate since a fast vehicle from left side is
entering the intersection and therefore the return for decelerate
action is higher than other actions.

IV. CONCLUSION

In this paper we showed how deep-sets architecture can
solve scalability issue and sensitivity to the input variations for
the reinforcement learning agents used for automated driving
at intersections. We proposed an architecture that does not
depend on the number of vehicles and intersecting lanes at
the intersection and can help to learn a policy which is more
robust and less conservative but still safe. Using IQN approach
in order to estimate return distributions instead of expected
returns, we showed how it can help to learn risk aware policies
which can prevent worst case outcomes using the learned
distributions.

V. ACKNOWLEDGMENT

This research is accomplished within the project
“UNICARagil” (FKZ 6EMO0287). We acknowledge the
financial support for the project by the Federal Ministry of
Education and Research of Germany (BMBF).

REFERENCES

[1] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik
Subramanian, and Kikuo Fujimura. Navigating occluded
intersections with autonomous vehicles using deep rein-
forcement learning. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2034–
2039. IEEE, 2018.

[2] D. Isele, A. Nakhaei, and K. Fujimura. Safe rein-
forcement learning on autonomous vehicles. In 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1–6, Oct 2018. doi: 10.1109/
IROS.2018.8593420.

[3] Tommy Tram, Anton Jansson, Robin Grönberg, Mo-
hammad Ali, and Jonas Sjöberg. Learning negotiating

behavior between cars in intersections using deep q-
learning. 2018 21st International Conference on Intel-
ligent Transportation Systems (ITSC), pages 3169–3174,
2018.

[4] Maxime Bouton, Alireza Nakhaei, Kikuo Fujimura, and
Mykel J Kochenderfer. Safe reinforcement learning with
scene decomposition for navigating complex urban envi-
ronments. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pages 1469–1476. IEEE, 2019.

[5] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and
J. Boedecker. High-level decision making for safe and
reasonable autonomous lane changing using reinforce-
ment learning. In 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), pages 2156–
2162, Nov 2018. doi: 10.1109/ITSC.2018.8569448.

[6] Shai Shalev-Shwartz, Shaked Shammah, and Amnon
Shashua. Safe, multi-agent, reinforcement learning for
autonomous driving. arXiv preprint arXiv:1610.03295,
2016.

[7] Maria Huegle, Gabriel Kalweit, Branka Mirchevska,
Moritz Werling, and Joschka Boedecker. Dynamic input
for deep reinforcement learning in autonomous driving.
arXiv preprint arXiv:1907.10994, 2019.

[8] Danial Kamran, Carlos Fernandez Lopez, Martin Lauer,
and Christoph Stiller. Risk-aware high-level decisions
for automated driving at occluded intersections with re-
inforcement learning. arXiv preprint arXiv:2004.04450,
2020.

[9] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
Barnabas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep sets. In Advances in neural information
processing systems, pages 3391–3401, 2017.

[10] Marc G Bellemare, Will Dabney, and Rémi Munos.
A distributional perspective on reinforcement learning.
arXiv preprint arXiv:1707.06887, 2017.

[11] Will Dabney, Mark Rowland, Marc G Bellemare, and
Rémi Munos. Distributional reinforcement learning with
quantile regression. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[12] Will Dabney, Georg Ostrovski, David Silver, and Rémi
Munos. Implicit quantile networks for distributional re-
inforcement learning. arXiv preprint arXiv:1806.06923,
2018.

[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun. CARLA: An open
urban driving simulator. Proceedings of the 1st Annual
Conference on Robot Learning, pages 1–16, 2017.

[14] Supplementary video file. https://www.dropbox.com/s/
vnrjl0pro1uqw8w/rl_occlusion.avi?dl=0.

https://www.dropbox.com/s/vnrjl0pro1uqw8w/rl_occlusion.avi?dl=0
https://www.dropbox.com/s/vnrjl0pro1uqw8w/rl_occlusion.avi?dl=0

	Introduction
	Motivation
	Related Works
	Contribution

	Proposed Approach
	State Representation
	Deep-set based State Processing
	Reward Function
	Action Space
	Implicit Quantile Networks (IQN)

	Evaluations
	Simulation Environment
	Impact of Deep-sets Architecture
	Return Distributions using IQN Approach

	Conclusion
	Acknowledgment

