Hierarchical Integrity Checking in Heterogeneous Vehicular Networks

Dominik Püllen, Nikolaos Athanasios Anagnostopoulos, Tolga Arul & Stefan Katzenbeisser

Introduction and Motivation

- Human drivers will be slowly replaced by intelligent machines relying on sensor input and sophisticated algorithms.
 - UNICARagil [1] vehicles
 - SAE level 5 [2] road vehicles
- Safety must be guaranteed to gain acceptance for autonomous vehicles in society.
- The vehicle's integrity state has to be verifiable to ensure a safe driving state:
 - hardware integrity
 - software integrity

Goal: Compute integrity identifiers to represent the vehicle's integrity state

Abstract Vehicular Structure

- Derivation of an integrity identifier *ii_{VEHICLE}* indicating the overall vehicle's integrity state
- The vehicle is logically divided into three hierarchical levels.

Hierarchical Integrity Checking

An identify identifier *ii*_{component} represents the integrity state of a specific component.

An integrity measurement of a component is the verification of its valid hardware and software state.

Characteristics of *ii*_{VEHICLE} :

- It should give instant feedback about the vehicle's integrity → usable by third parties
- It should be made available to third parties such as car manufacturers and authorities.
- It should incorporate the integrity measurements of low-end devices (e.g. sensors) and computational powerful units (e.g. environment perception ECU) → creation of a secure key to eventually perform hardware and software attestation

Ve

Challenges and Opportunities:

- Platform Heterogeneity:
 - low-end devices: Physical Unclonable Functions (PUFs)
 inherent key derivation based on hardware characteristics
 - high-end devices: Trusted Platform Modules (TPMs)
 - vendor-generated secure key stored in tamper-proof chip

Hierarchy:

- compute identifiers in a distributed way to more reliably distinguish between safety-critical components
- Identifier Distribution:
 - V2X communication
 - blockchain

Challenge-Response Game:

rifier (e.g. authority)	n	Prover (vehicle)
	On each hierarchy layer:	
	 integrity measurer encryption of <i>n</i> w integrity measure integrity identifiers recursive collect propagation of inte upper layer, finally 	nents of components ith the output of the ements, resulting in tion, hashing and egrity identifiers to the resulting in $ii_{VEHICLE}$
	ii _{vehicle}	-
compare the received <i>ii</i> with the value calculate	vehicle ated in	

advance

References

[1] Lutz Eckstein, Stefan Katzenbeisser, Timo Woopen, Dominik Püllen et al. UNICARagil - Disruptive Modular Architectures for Agile, Automated Vehicle Concepts; 1st edition. In 27. Aachener Kolloquium Fahrzeug- und Motorentechnik : October 8th - 10th, 2018 - Eurogress Aachen, Germany = 27. Aachen Colloquium Automobile and Engine Technology. - 1, pages 663–694, Aachen, Oct 2018. 27th Aachen Colloquium Automobile and Engine Technology 2018, Aachen (Germany), 8 Oct 2018 - 10 Oct 2018, Aachener Kolloquium Fahrzeug- und Motorentechnik GbR.

[2] Taxonomy and Definitions for Terms Related to On-Road Motor VehicleAutomated Driving Systems, jan 2014.

