Addressing Equity, Accessibility, Inclusivity and Acceptance in the Development of new Architectures for Automated Vehicles in UNICARagil

Orlando, July 16, 2019
Timo Woopen, M.Sc.

Institute for Automotive Engineering, RWTH Aachen University

SPONSORED BY THE Federal Ministry of Education and Research
Challenges regarding Equity, Accessibility, Inclusivity in public and private vehicles

- Today’s vehicles mostly designed for the majority of the adult population
- People may not be able or allowed to use a car on their own for various reasons
 - Children, elderly and disabled people
- For private automated vehicles, requirements need to be defined \([1]\)
- For public transport in Europe, there is a directive for vehicles with a capacity of 8 occupants or more \([2]\)
 - Smaller vehicles (taxi, small shuttles) are not included

 ➔ Until 2022, full accessibility for local public passenger transport in Germany is to be achieved \([3]\)
Equity, Accessibility, Inclusivity and Acceptance

- The main project focus is the technological approach on modular architectures for agile, automated vehicles [4]

- However, these topics are addressed in the different use cases developed in the project
 - Acceptance and trust on automated vehicles
 - Equity, accessibility, inclusivity in private and public transport
OVERALL SYSTEM

Control-Room
- Remote vehicle operation
- Service center, e.g. for emergencies or sovereign interventions

Cloud Functionality
- Additional information for automated driving function
- Collective environment model
- Collective traffic memory

Four Fully Automated and Driverless Vehicles Enabled by Modular Information Processing
- Service-oriented SW architecture allows updates and additions to secure modules
- Vehicle fully functional without external information

Driving-Platform with Dynamic-Modules
- Modular structure consisting of 4 dynamic modules, energy module, brain stem + self-awareness
- Scalable, different vehicle sizes can be displayed
- Electric (48 Volt) and functionally safe

Intelligent Infrastructure
- Minimal stationary sensors
- Dynamic supplement through sensor cluster = drones

Sensor-Modules
- Identical integration for all vehicle variants
- Fail-operational due to 3 physical sensor principles
- Provides environment information as a service

Source: [4]
© ika - RWTH Aachen University

UNICARagil - Automated Vehicles Symposium 2019
Acceptance and trust on automated vehicles

Gain trust of other traffic participants via interieur, exterior and motion HMI

Active/direct communication
- Displays
- Lights / LEDs
- Gestures

Passive/implicit communication
- Velocity and distance
- Acceleration
- Pitch

Behavior of automated vehicles needs to be predictable to other traffic participants and occupants of the vehicle
• Supplementing the public transport system
• 6 – 8 persons
• Moves and behaves like a rail vehicle

auto SHUTTLE

• Acceptance and trust by exterior and interior HMI
• Inclusive, equitably and accessible
- Acceptance and trust by exterior HMI
- Accessibility for all people
- Pick up and delivery service
- Automated handover
- Dense storage system
• Taxi-service
• Order, open, interact with CE device
• Cooperative and agile ...

• Acceptance and trust by exterior and interior HMI
• Private „Butler / Nanny”
• Carrying out private trips to school, sports ...
• Private and individual
• Accessible, inclusive and trustworthy

• Inclusive, equitable and accessible for all family members

auto ELF

Summary

auto SHUTTLE
- acceptance and trust by exterior and interior HMI
- Inclusive, equitably and accessible

auto TAXI
- acceptance and trust by exterior and interior HMI

auto CARGO
- acceptance and trust by exterior HMI
- accessibility for all people

auto ELF
- Inclusive
- equitably
- accessible for all family members

Be ready for an equitable and trustworthy future mobility!

July 16, 2019
How to get in touch?

SOCIAL MEDIA

- Twitter [logo]
- Facebook [logo]
- LinkedIn [logo]
- X [logo]
- R [logo]
- YouTube [logo]
- Instagram [logo]

HOMEPAGE

www.unicaragil.de

SAVE THE DATE & JOIN OUR NEWSLETTER

UNICARagil halftime event

March 24 2020, Munich Germany

Timo Woopen, M.Sc.

Institute for Automotive Engineering
RWTH Aachen University
Automated Driving
Overall Project Manager UNICARagil

- Email: timo.woopen@ika.rwth-aachen.de
- Phone: +49 151 70053037

UNICARagil - Automated Vehicles Symposium 2019
References

[1] **Schräder, T., Stolte, T., Jatzkowski, J., Graubohm, R., & Maurer, M.**
30th IEEE Intelligent Vehicles Symposium, 2019
An Approach for a Requirement Analysis for an Autonomous Family Vehicle

Personenbeförderungsgesetz (PBeFG) §8(3)
Retrieved from https://www.gesetze-im-internet.de/pbefg/__8.html#

27th Aachen Colloquium, 2018
UNICARagil - Disruptive Modular Architectures for Agile, Automated Vehicle Concepts