Hierarchical Integrity Checking in Heterogeneous Vehicular Networks
Dominik Püllen, Nikolaos Athanasios Anagnostopoulos, Tolga Arul & Stefan Katzenbeisser

Introduction and Motivation

- Human drivers will be slowly replaced by intelligent machines relying on sensor input and sophisticated algorithms.
 - UNICARagil [1] vehicles
 - SAE level 5 [2] road vehicles
- Safety must be guaranteed to gain acceptance for autonomous vehicles in society.
- The vehicle’s integrity state has to be verifiable to ensure a safe driving state:
 - hardware integrity
 - software integrity

Goal: Compute integrity identifiers to represent the vehicle’s integrity state

Abstract Vehicular Structure

- Derivation of an integrity identifier i_{VEHICLE} indicating the overall vehicle’s integrity state
- The vehicle is logically divided into three hierarchical levels.

Hierarchical Integrity Checking

An identity identifier $i_{\text{component}}$ represents the integrity state of a specific component.

An integrity measurement of a component is the verification of its valid hardware and software state.

Characteristics of i_{VEHICLE}:

- It should give instant feedback about the vehicle’s integrity usable by third parties
- It should be made available to third parties such as car manufacturers and authorities.
- It should incorporate the integrity measurements of low-end devices (e.g. sensors) and computational powerful units (e.g. environment perception ECU) creation of a secure key to eventually perform hardware and software attestation

Challenges and Opportunities:

- Platform Heterogeneity:
 - low-end devices: Physical Unclonable Functions (PUFs)
 - inherent key derivation based on hardware characteristics
 - high-end devices: Trusted Platform Modules (TPMs)
 - vendor-generated secure key stored in tamper-proof chip
- Hierarchy:
 - compute identifiers in a distributed way to more reliably distinguish between safety-critical components
- Identifier Distribution:
 - V2X communication
 - blockchain

Challenge-Response Game:

Verifier (e.g. authority) n Prover (vehicle)

On each hierarchy layer:

- integrity measurements of components
- encryption of n with the output of the integrity measurements, resulting in integrity identifiers
- recursive collection, hashing and propagation of integrity identifiers to the upper layer, finally resulting in i_{VEHICLE}

- compare the received i_{VEHICLE} with the value calculated in advance

References
